Intranasal Vaccination with Mannosylated Chitosan Formulated DNA Vaccine Enables Robust IgA and Cellular Response Induction in the Lungs of Mice and Improves Protection against Pulmonary Mycobacterial Challenge
نویسندگان
چکیده
Induction of specific humoral and cellular immunity in the lung airways is proposed to be critical for vaccine protection against Mycobacterium tuberculosis (M. tb). To facilitate airway delivery and antigen targeting to the antigen presenting cells in the alveoli, we employed mannosylated chitosan (MCS) to formulate a multi-T-epitope DNA vaccine, pPES, as an intranasal TB vaccine. MCS-DNA nanoparticles appeared spherical with the average particle sizes as 400 nm. HSP65-specific bronchoalveolar lavage fluid SIgA level was significantly elevated by 4 doses of MCS-pPES intranasal immunization as compared to chitosan (CS)-DNA and BCG vaccine. I.n. immunization with MCS-DNA induced a modest peptide-specific Th1(IFN-γ, TNF-α, and IL-2) response in the spleen, while a potent poly-functional CD4+ T response that largely produced TNF-α and IFN-γ, as well as IL-2 in the lung, qualitatively better than that induced by CS-DNA and BCG vaccination. Such response by i.n. immunization with MCS-DNA provided improved protection in the lung against airway Mycobacterial bovis BCG challenge over i.n. CS-DNA and DNA, that is comparable to protection achieved by s.c. BCG vaccination. This enhanced protection was correlated with much greater accessibility of DNA particles to the alveolar macrophages in the lung mediated by man-chitosan. Thus, man-chitosan TB vaccine represents a promising vaccine platform capable of eliciting robust multi-functional T response in the lung mucus and achieving enhanced mucosal immune protection against pulmonary TB.
منابع مشابه
Use of N-trimethyl chitosan for intranasal delivery of DNA encoding M2e-HSP70c in mice
BACKGROUND: Influenza outbreak has become a great lifethreateningdisease in the world. Nasal vaccines can inducesystemic IgG and mucosal IgA antibody responses, whichestablish two layers of immune defense against the infectiouspathogens like influenza. Mucosal vaccines must overcomeseveral limitations, including the mucociliary clearance andinefficient uptake of soluble antigens. Therefore, nas...
متن کاملChitosan-Based Intranasal Vaccine against Escherichia coli O157:H7
Background: Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is an infectious zoonotic pathogen causing human infections. These infections, in some cases, can lead to hemolytic uremic syndrome and its life-threatening complications and even death worldwide. The first intimate bacterial adhesion, intimin (I), with its own receptor translocated intimin receptor (Tir) and E. coli secreted protein...
متن کاملEffect of LIGHT Adjuvant on Kinetics of T-Cell Responses Induced by HSV-1 DNA Immunization
Background: Studies on efficacy of various vaccines that prevent or reduce the primary and recurrent HSV-1 infection have demonstrated the importance of cellular immunity for protection against the infection. We previously used DNA vaccination to induce cellular immunity against HSV-1 infection in mice. Objective: The aim of our study was to evaluate the effect of LIGHT, a member of TNF super f...
متن کاملIntranasal immunization with a single dose of the fusion protein formulated with a combination adjuvant induces long-term protective immunity against respiratory syncytial virus
Respiratory syncytial virus (RSV) is the most common cause of respiratory tract infections in both children and elderly people. In this study we evaluated the short- and long-term protective efficacy of a single intranasal (IN) immunization with a RSV vaccine formulation consisting of a codon-optimized fusion (F) protein formulated with poly(I:C), an innate defense regulator peptide and a polyp...
متن کاملCellular Immune Responses to Nine Mycobacterium tuberculosis Vaccine Candidates following Intranasal Vaccination
BACKGROUND The identification of Mycobacterium tuberculosis vaccines that elicit a protective immune response in the lungs is important for the development of an effective vaccine against tuberculosis. METHODS AND PRINCIPAL FINDINGS In this study, a comparison of intranasal (i.n.) and subcutaneous (s.c.) vaccination with the BCG vaccine demonstrated that a single moderate dose delivered intra...
متن کامل